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SUMMARY

In this paper the explicit jump immersed interface method (EJIIM) is applied to stationary Stokes flows.
The boundary value problem in a general, non-grid aligned domain is reduced by the EJIIM to a sequence
of problems in a rectangular domain, where staggered grid-based finite differences for velocity and pressure
variables are used. Each of these subproblems is solved by the fast Stokes solver, consisting of the pressure
equation (known also as conjugate gradient Uzawa) method and a fast Fourier transform-based Poisson
solver.

This results in an effective algorithm with second-order convergence for the velocity and first order
for the pressure. In contrast to the earlier versions of the EJIIM, the Dirichlét boundary value problem is
solved very efficiently also in the case when the computational domain is not simply connected. Copyright
q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We consider the stationary Stokes equations for the velocity u=(u,v)� and the pressure p in a
bounded domain �⊂R2

−�u+∇ p= f in � (1)

−∇ ·u=0 in � (2)

u=uD at �� (3)∫
�
p=0 (4)
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1528 V. RUTKA

where f=( f 1, f 2)� is the applied force. Condition (4) is necessary for the uniqueness of the
pressure. All problem data (�, f and uD) are assumed to be sufficiently smooth so that the solution
belongs to the class u∈C4(�), p∈C3(�) (we refer to classical books such as [1, 2] for the
existence theory and regularity results).

The main motivation of this work was the necessity to solve Stokes problems with different
right-hand sides as required for the simulation of rigid particle transport in a viscous polymer [3].
Further, the presented approach can be seen as an improvement of the first-order method proposed
in [4, 5]. The geometry is typically given in a voxelized description, so that a first-order treatment
is very natural. However, if a more accurate geometry description is available, a second-order
method can help to extract more information about the flow and its properties. Finally, also as a
building block in algorithms for Navier–Stokes equations, a fast and accurate Stokes solver is of
high importance.

The original immersed interface method (IIM) [6] has been exploited for solving various Stokes
problems in [7–10] explaining how to deal with the pressure boundary condition. In contrast to our
approach, these methods are based on solving three Poisson problems on a regular, non-staggered
grid.

2. NUMERICAL METHOD

In this section we apply the explicit jump immersed interface method (EJIIM) [11, 12] to Stokes
flows. At first, discretization in an ‘easy’ rectangular domain is recalled and then the EJIIM
approach is used to treat domains of a general shape.

2.1. Discretization of Stokes equations in a rectangular domain

Consider at first a rectangular domain B

B :={(x, y)∈R2|ax�x�bx ,ay�y�by}, ax ,bx ,ay,by ∈R and ax <bx ,ay <by

For technical reasons, we allow the fluid to be compressible in this section and replace (2) by

−∇ ·u=g in B (5)

whenever considering the Stokes equations (1)–(3) in the domain B.

2.1.1. Staggered grid. To discretize equations (1), (3), (5), we choose finite differences on a
staggered grid (see, e.g. [13] for an introduction or [14, 15]). Let nx ,ny ∈N be the number of
grid points in the x and y directions, where the numbering is started at zero. The corresponding
mesh widths are hx =(bx −ax )/nx and hy =(by−ay)/ny . Only to simplify the nomenclature, it
is assumed from now on that nx =ny =:n and hx =hy =:h.

The staggered grid is composed of three different meshes named as u-mesh, v-mesh and
p-mesh (see Figure 2(b) for an illustration). With xi :=ax +ih, y j :=ay+ jh, i, j ∈{0,1, . . . ,n},
xi+1/2 :=ax +(i+ 1

2 )h and y j+1/2 :=ay+( j+ 1
2 )h, i, j ∈{0,1, . . . ,n−1} we have (see Figure 2(b))

• u-mesh (black circles and solid lines) with ui j :=u(xi , y j+1/2),
• v-mesh (white circles and dashed lines) with vi j :=v(xi+1/2, y j ),
• p-mesh (crosses) with pi j := p(xi+1/2, y j+1/2).
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On such a grid, the following second-order-consistent approximation of Equations (1), (3), (5),
is chosen:

−ui+1, j −2ui, j +ui−1, j

h2
− ui, j+1−2ui, j +ui, j−1

h2
+ pi, j − pi−1, j

h
= f 1i, j (6)

−vi+1, j −2vi, j +vi−1, j

h2
− vi, j+1−2vi, j +vi, j−1

h2
+ pi, j − pi, j−1

h
= f 2i, j (7)

−1

h
(ui+1, j −ui, j )− 1

h
(vi, j+1−vi, j )=gi, j (8)

for i, j =1,2, . . . ,n−1, where f 1i, j := f 1(xi , y j+1/2), f 2i, j := f 2(xi+1/2, y j ). The last equation is
the approximation of (5) at the grid points of the p-mesh.

Remark 1
In general, the staggered grid approach may be problematic due to shifted Dirichlét boundary
conditions on u and v meshes. The IIMs, however, overcome this difficulty in a natural way as it
will be shown later and we can assume the Dirichlét boundary conditions to be given along the
shifted boundaries without any loss of accuracy.

With U :=(u0,0,u1,0, . . . ,un,n−1)
�, V :=(v0,0,v1,0, . . . ,vn−1,n)

� and P :=(p0,0, p1,0, . . . ,
pn−1,n−1)

� we denote the discrete solution vectors of both velocity components and pressure.
Then the discrete Stokes system (6)–(8) together with Dirichlét boundary conditions along the
shifted boundaries is expressed as

AS= R (9)

with

A :=
(−�h ∇h

−∇h · 0

)
, �h :=

(
�u
h 0

0 �v
h

)
, W :=

(
U

V

)
, S :=

(
W

P

)

Here, �u
h and �v

h stand for discrete Laplace operators with Dirichlét boundary conditions on u
and v meshes, ∇h is the discrete gradient, where the x-derivative operator is approximated on
the u-mesh and the y-derivative on the v-mesh as in (6), (7). The operator ∇h · is the discrete
divergence according to (8). Notation 0 is used for zero matrices with appropriate dimensions. The
right-hand side R is given by

R=
(
F

G

)
, F=

(
F1

F2

)

where F1 and F2 are the values of the right-hand side term on u and v grids, respectively, and
G is the vector corresponding to the discrete right-hand side in (8).

To remove the rank deficiency of system (9) due to the non-uniqueness of the pressure, we
approximate condition (4) and require in addition that

n−1∑
i, j=0

pi, j =0 (10)
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1530 V. RUTKA

2.1.2. Discrete compatibility condition. In order for the overdetermined linear system (9), (10) to
have a solution, the right-hand side R has to lie in the image space of the operator A.

In the continuous case, the mass conservation equation (5) in the domain B together
with the Dirichlét boundary condition (3) leads to the following compatibility condition (see,
e.g. [1, p. 183]):

−∇ ·u=g⇒
∫

�B
u·n !=

∫
B
g (11)

where n is the outer normal vector to the domain B.
An analogous condition has to hold also in the discrete case. Summation over all grid points of

the p-mesh in Equation (8) leads to the discrete compatibility condition

n−1∑
i, j=0

gi, j
!=−1

h

n−1∑
j=0

(un, j −u0, j )− 1

h

n−1∑
i=0

(vi,n−vi,0) (12)

Remark 2
Even if some function g and boundary conditions (uD,vD)� satisfy the continuous compatibility
condition (11), it still can happen that the discrete version (12) does not hold. In such cases, a
small correction has to be added to the discrete right-hand side and/or boundary data.

2.2. Fast Stokes solver

In the EJIIM approach, the discrete Stokes system (9) has to be solved repeatedly as a part of
the iteration, thus requiring an excellent performance of this step. We have chosen the pressure
equation method [16] coupled with a fast Fourier transform (FFT)-based Laplace solver [17]. The
algorithm is based on the Schur complement of system (9) for the pressure variable P

MP=Q where M=−∇h ·(�−1
h ∇h), Q=G−∇h ·(�−1

h F) (13)

Applying a fixed point iteration to the linear system (13) leads to the Uzawa algorithm [2, 16],
whereas the conjugate gradient method leads to the so-called pressure equation method [16], known
also as CG via Uzawa (see, for example, [18]).

Note that each matrix–vector product with M involves one application of �−1
h , that is, one solve

of the discrete Laplace equation with Dirichlét boundary conditions. Here, we use the FFT-based
fast solver from [17]. In the last step, the pressure is projected onto the space of functions satisfying
(10) by adding a suitable constant. Once the pressure P has been found, the velocity variable W
is obtained using one subsequent Poisson solve from

W =−�−1
h (F−∇h P)

The importance of the compatibility condition (12) is illustrated by the following example.

Example 2.1
Consider solving of the linear system (9) in the unit square with h= 1

10 and n=10. The right-hand
side vector F is generated randomly. For the velocity component, the homogeneous Dirichlét
boundary condition has been set along the shifted boundaries. For the vector G, we take the
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Figure 1. Influence of the compatibility condition (12) in Example 2.1 for pressure equation (PE) and
Uzawa algorithms. Condition (12) holds only in the cases (A) and (C) and not in (B).

following possibilities:

(A) G=0 everywhere.
(B) G=10−5 at one random grid point, otherwise zero.
(C) G=10−5 at one random grid point, − 1

210
−5 at two other grid points.

The compatibility condition (12) is satisfied only in cases (A) and (C).

Figure 1 demonstrates the enormous influence of the compatibility condition. Especially, for the
pressure equation approach, small perturbations in the right-hand side data can lead to a blow up
of the method.

2.3. EJIIM approximation of Stokes equations in general domains

Once it is clear how to deal with the Stokes equations in rectangular domains, we can go over
to computational domains � with general shapes. We follow the standard EJIIM approach for
boundary value problems [11, 12] (see also [19, 20]) by embedding the original domain into a
rectangular domain B and extending in �c := B\� the solution (u, p) with zero. Then the original
boundary becomes an artificial interface �, along which the solution is, in general, discontinuous
(Figure 2(a)).

Definition 1
Let q(x, y) be a piecewise continuous function with a possible discontinuity along the interface
� :=�∩�c. Let (x∗, y∗)∈�. Then we define the one-sided values of q as

q+(x∗, y∗) := lim
�c�(x,y)→(x∗,y∗)

q(x, y), q−(x∗, y∗) := lim
��(x,y)→(x∗,y∗)

q(x, y)
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∂Ω = Γ

B

 ∂B

−

−
−

−
∆ u + ∇ p = f

∇ · u = 0

∆ u + ∇
∇

p = 0
 · u = 0

u = 0, p = 0

u = ?, p = ?

u = 0

Γ

Ω

(a) (b)

Figure 2. Illustration to the embedding idea: (a) Immersed interface embedding of the domain � in a
rectangular box B. In �c := B\� solution is extended by zero. (b) Irregular grid points and intersections
near the interface. Black circles and solid lines: u-mesh with intersections marked by black triangles
oriented to the right for x-intersections and upward for y-intersections. White circles, dashed lines and
white triangles: v-mesh, crosses: p-mesh. The irregular points of all meshes are marked by rhombs.

and the jump

[q(x∗, y∗)] :=q+(x∗, y∗)−q−(x∗, y∗)

As basis for the EJIIM, a standard mesh from Section 2.1.1 over the domain B is imposed. We
classify the grid points as regular or irregular (Figure 2(b)):

Definition 2
A grid point (xi , y j+1/2) for some i, j ∈{1,2, . . . ,n−1} of the u-mesh is called regular (with
respect to discretization (6)–(8)) if the stencil of (6) is not cut by the interface �. Otherwise this
grid point is called irregular. Analogously, the regular and irregular points of v and p meshes are
defined by considering the stencils of (7) and (8), respectively.

Points where the interface � cuts the grid lines parallel to the x-axis are called x-intersections,
points where � cuts the grid lines parallel to the y-axis are called y-intersections.

At all regular points, the O(h2) accurate discretization (6)–(8) is valid. The irregular points
require more attention due to the discontinuities in functions and their derivatives.

2.3.1. Corrected finite differences. At the irregular grid points the truncation error is improved
using the corrected finite differences according to the following lemma [11, 12].
Lemma 1
Let x j��< x j+1, h− = x j −� and h+ = x j+1−�. Suppose w∈C4([x j −h,�))∩C4((�, x j+1+h]),
with derivatives extending continuously up to the boundary �. Then the following approximations
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hold up to O(h):

wx (x j )≈ w(x j+1)−w(x j−1)

2h
− 1

2h

1∑
m=0

(h+)m

m! [dmw] (14)

wx (x j+1)≈ w(x j+2)−w(x j )

2h
− 1

2h

1∑
m=0

(h−)m

m! [dmw] (15)

wxx (x j )≈ w(x j+1)−2w(x j )+w(x j−1)

h2
− 1

h2

2∑
m=0

(h+)m

m! [dmw] (16)

wxx (x j+1)≈ w(x j+2)−2w(x j+1)+w(x j )

h2
+ 1

h2

2∑
m=0

(h−)m

m! [dmw] (17)

Remark 3
Extending the sum to one more term in (14), (15) leads to a second-order truncation error, as
stated in the original version of Lemma 1 in [11, 12].
Remark 4
Now the necessity for the generalized incompressibility condition (5) becomes apparent. As an
illustration we consider an x-type intersection with the interface parallel to the y-axis between the
grid points xi and xi+1 of the u-mesh. For simplicity, we assume the v-component of the velocity
to be constant. Then, instead of approximation (8) we choose

0=−1

h
(ui+1, j −ui, j )− 1

h
(vi, j+1−vi, j )+ 1

h
([u]+h+[�xu])

which can be viewed as the original divergence approximation (8) with a correction term playing
the role of the compressibility function g in (5).

The domain B and Equations (1), (2) are discretized as outlined in Section 2.1.1. However, the
discontinuity of the solution near the interface � has to be taken into account: at each node where
the interface cuts the finite difference stencil, appropriate correction terms involving the jumps in
the function and its derivatives are used according to Lemma 1. EJIIM introduces these jumps as
additional variables in the system. More specifically we have:

• At x-intersections of the u-mesh: These intersections affect the approximation of �xxu
and according to Lemma 1 we need [u], [�xu] and [�xxu]. Note that, in Equation (6),
the term (1/h)(pi, j − pi−1, j ) is a central finite difference approximation of the derivative
�x p(xi , y j+1/2). According to (14), (15) we therefore need the jumps [p] and [�x p] in order
to obtain a first-order truncation error.

• At y-intersections of the u-mesh: We need to correct only the �yyu derivative in (6) demanding
[u], [�yu] and [�yyu].

• Analogously we find that discretization (7) requires

◦ [v], [�xv] and [�xxv] at x-intersections of the v-mesh and
◦ [v], [�yv], [�yyv], [p] and [�y p] at the y-intersections of the v-mesh.

• Intersections of � with the p-mesh affect the derivatives in (8). For correcting the approxima-
tion (1/h)(ui+1, j −ui, j )≈�xu(xi+1/2, y j ), we would need [u] and [�xu] at the x-intersections
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1534 V. RUTKA

of the p-mesh. Note, however, that x-intersections of the p-mesh coincide with the
x-intersections of u-mesh and that all necessary jumps are already available. In fact, it is not
related with any extra cost to achieve even a second-order truncation error by adding one
more term with m=2 in the corrected finite difference formula (14), as the [�xxu] jump is
necessary for discretizing the �xxu term anyway.
Analogously the approximation (1/h)(vi, j+1−vi, j )≈�yv(xi , y j+1/2) would require [v]

and [�yv] jumps at the y-intersections of the p-mesh. Also, here no additional variables need
to be introduced thanks to the coincidence of the y-intersections on v- and p-meshes.

The corrected finite differences can be expressed in compact form as

AS+WJ = R (18)

where J is the vector of jumps and W contains the coefficients of the correction terms according
to Lemma 1. Matrix W is sparse and has non-zero entries only in the rows corresponding to the
irregular grid points.

2.3.2. Imposing the compatibility condition. With a known jump vector J , the solvability of system
(18) has to be assured, that is, R−WJ and homogeneous Dirichlét boundary conditions for the
velocity along �B have to satisfy the discrete compatibility condition (12).

At first we rewrite W in form

W=
(
Wimpulse

Wmass

)
so that AS+WJ =

(
�hW +∇h P+Wimpulse J

∇h ·W +Wmass J

)

Then the approximation of the incompressibility condition (2) according to the corrected finite
differences described before is

∇h ·W +Wmass J =0

System (18) is solvable under the condition that∑
(xik ,y jk )∈G

(Wmass J )k = ∑
(xik ,y jk )∈Girreg

(Wmass J )k
!=0 (19)

as the right-hand side of (12) is zero due to extension of the velocity by zero in �c. The notation
G stands for the set of all p-grid points and Girreg is the set of all irregular points of the p-mesh.
We have used that Wmass J is zero at all regular points of the p-mesh.

Unfortunately, due to the truncation errors, condition (19) cannot be guaranteed to hold even for
the exact solution of Stokes equations (1)–(3) and the related jumps. To overcome this difficulty,
the operator Wmass is replaced by W̃mass defined as

(W̃mass J )k =
{

(Wmass J )k−m(J ) if (xik , y jk )∈Girreg

0 else

for k=1,2, . . . , (n−1)(n−1) with

m(J )= 1

N

∑
(xik ,y jk )∈Girreg

(Wmass J )k, N :=#(Girreg)
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Instead of (18) in further calculations we use

AS+W̃J = R where W̃=
(
Wimpulse

W̃mass

)
(20)

The truncation error after this replacement can be shown to be O(h) at all irregular points of
the p-mesh.

Lemma 2
Let W ex be the exact velocity components of the solution to (1)–(3) (extended by zero in �c and
restricted to the grid points). Let J ex be the vector of the exact jumps restricted to the intersection
points. Then the truncation error of the discrete mass conservation equation is

−∇h ·W ex+W̃mass J ex=
{
O(h2) at all regular grid points

O(h) at irregular grid points

Proof
By using also the jumps in second-order derivatives of the velocity components, we have the
second-order approximation at all points of the p-mesh:

−∇h ·W ex+Wmass J ex=O(h2) (21)

Now we sum the above expression over all grid points. Owing to homogeneous Dirichlét boundary
conditions on u, we have ∑

(xik ,y jk )∈G
(∇h ·W ex)k =0

implying

Nm(J )= ∑
(xik ,y jk )∈Girreg

(Wmass J ex)k = ∑
(xik ,y jk )∈G

(Wmass J ex)k = ∑
(xik ,y jk )∈G

O(h2)=O(1)

In the expression above we have used that Wmass J ex is non-zero only at the irregular grid points.
Thus, m(J )=(1/N )O(1)=O(h) as N =O(1/h). �

Remark 5
In [21, p. 74], a very similar approach is used by subtracting the mean value of the correction
term. The essential difference is that, here, we perturb the approximation only at the irregular grid
points, whereas in [21] a small O(h2) constant is added at all grid points. Our approach allows to
preserve the local influence of the operator W.

2.3.3. Jump conditions. The corrected finite differences (20) involve the unknown jump vector J .
To close the system, additional conditions relating the primary variables (W, P) and the jump
vector J are necessary. They are constructed in two steps.

• Derive the so-called jump conditions by expressing all necessary jumps in terms of the known
quantities and one-sided values of the unknown solution and its derivatives.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1527–1543
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• The necessary one-sided values at the intersections are approximated by (unknown) solution
values at the grid points using an appropriate extrapolation.

We start by deriving the jump conditions for the Stokes equations.

Jumps in the velocity.

• Zeroth-order jumps. Thanks to the Dirichlét boundary condition, the jump in the velocity is
known explicitly

[u]=−uD (22)

• First-order jumps. We start by introducing the local velocity (�,�) :=(u·n,u·t), where
n=(n1,n2)� and t=(−n2,n1)� are normal and tangent vectors of the interface �. The
incompressibility condition (2) implies that [�n�]+[�t�]=0.
For the local velocities, the following set of jump conditions is used:

[�n�]=−�n�, [�n�]=−[�n�]=�n�

[�t�]=−�t�, [�t�]=−�t�

Transforming the above expressions back to (u,v) components leads to

[�xu]=−n21�xu
−+n22�yv

− (23)

[�yu]=−�yu− (24)

[�xv]=−�xv− (25)

[�yv]=n21�xu
−−n22�yv

− (26)

• Second-order jumps. Here we just set

[�xxu]=−�xxu−, [�yyu]=−�yyu− (27)

Jumps in the mixed derivatives [�xyu] are not necessary for the Stokes equations.

Jumps in the pressure

• Zeroth-order-jumps. We use the trivial jump condition

[p]=−p− (28)

• First-order jumps. Exploiting the impulse conservation equations (1) yields

[�x p]=[ f 1]+[�u]=[ f 1]−�u− (29)

[�y p]=[ f 2]+[�v]=[ f 2]−�v− (30)

• Second-order jumps are not necessary for preserving the first-order truncation error at the
interface.

In the next step, the one-sided values appearing in the jump conditions (22)–(30) have to be
expressed with the function values at the grid points by an appropriate extrapolation. Here we use
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two approaches: the classical polynomial fit as described in [12] and a modified version where the
Dirichlét boundary is explicitly imposed by following the ideas in [22].

Then, system (20) can be closed by additional equations

DS+ J =T (31)

with an appropriate matrix D and the right-hand side T . For more details we refer to the first
works on EJIIM [11, 12].

2.3.4. Solving the EJIIM system. System (20), (31) is solved in a similar manner as other
boundary value problems [11, 12, 19]. At first we write the Schur complement for the jump
variable J :

(I−DA−1W̃)J =T −DA−1R (32)

The matrix B :=I−DA−1W̃ is dense and cannot be stored explicitly. The way out is offered
by Krylov-space methods (see, for example, [23]) such as GMRES, which only require matrix–
vector products with B. In each step a standard discrete Stokes problem of type (9) has to be
solved when applying the operator A−1. This is done using the pressure equation method from
Section 2.2.

Remark 6
Already in [11, Section 3.6.1], it has been pointed out for the Poisson problems that EJIIM approach
does not have a unique solution if the domain �c is not connected, an example of which arises
when computing flows around obstacles in two dimensions.

In particular, extra work is required to assure the zero solution in the components of �c not
sharing the boundary �B. Here we consider several possible solutions:

1. If nothing is done to impose zeros in �c, we call it ‘standard extension’ or ‘SE’, which is
expected to work in case �c is connected.

2. Impose zero explicitly everywhere in �c by using ui j =0 and vi j =0 instead of (6) and
(7). This approach has the best approximation properties; unfortunately, the FFT solver is
disabled. We name this ‘exact extension’ or ‘EE’.

3. We follow the suggestion in [11, Section 3.8], and introduce additional variables for function
values at few points in �c. In our case, we enforce zero values of the velocity at the irregular
points of �c. This approach allows one to use FFT for inverting the Stokes matrix A. We
refer to it as ‘zero ghost extension’ or ‘ZGE’.

4. Instead of the ‘classical’ EJIIM extrapolation of the one-sided function values as in [19] we
use the modified version following [22]. In addition to the least-squares fit for the polynomial
coefficients (see [19, 22] for details) we require the one-sided approximations of u− to
satisfy the Dirichlét boundary conditions. In our computations demonstrated below we have
weighted this condition by a factor 10. This will be called ‘boundary condition extension’
or ‘BCE’.

Remark 7
Usage of different numerical tools can make the practical realization of the algorithm relatively
sophisticated, and a modular approach can be extremely helpful.
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An example of the EJIIM implementation for the Poisson equation by the author and
A. Wiegmann is available online at http://www.math.uni-konstanz.de/∼rutka/
EjiimEx/DOC/documentation/.

The routines posted there form the basis also of the programs used in this article for the Stokes
equations.

Remark 8
There is a certain similarity between the immersed interface and the boundary integral methods.
In fact, the article by Mayo [24] where fast solvers for Poisson and biharmonic equations have been
constructed based on integral equation formulations is one of the milestones in the development
of the IIMs (see, e.g. the introduction of [11]). Some details and comparison of the EJIIM with
the boundary integral methods are discussed in [25; 20, p. 75]

An extension of Mayo’s method (embedded boundary integral (EBI) method) to the Stokes
system has been offered in [26]. If we compare EBI with EJIIM, we see that solving
Equation (32) corresponds to approximately solving an integral equation. In the EJIIM approach,
the corresponding matrix on the left-hand side, I−DA−1W̃, is never computed and stored explicitly.
On the one hand, this makes an application of preconditioners difficult as the matrix entries are
difficult to obtain. On the other hand, the practical experience (see the following section) shows
that iteration counts in solving (32) increase very slowly under the grid refinement (Tables I and II).
Thanks to the fast Stokes solver, the application of I−DA−1W̃ is cheap and the method allows a
straightforward extension to three dimensions.

Table I. Number of GMRES iterations to achieve 10−8 stopping tolerance
in Example 3.1 with different extensions.

n=80 n=120 n=160 n=200 n=240 n=280 n=320

Circle geometry
SE 21 21 23 23 24 24 24
EE 15 14 15 15 15 15 15
ZGE 83 96 109 120 128 134 143
BCE 22 23 26 27 29 28 32

‘Fish’ geometry
EE 19 19 19 18 17 17 18
ZGE 168 170 205 188 186 207 216
BCE 35 39 40 41 43 45 46

Table II. Number of GMRES iterations needed to achieve 10−8 stopping
tolerance for the Wannier flow example.

n=80 n=120 n=160 n=200 n=240 n=280 n=320

EE 22 21 22 23 22 23 21
BCE 23 23 25 27 29 30 32
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3. NUMERICAL RESULTS

In this section we demonstrate the performance of the method on two examples with known
analytic solutions. The error is computed in the maximum norm.

Example 3.1
We take the following functions as exact solutions to the Stokes equations (1)–(3):

u= 1

x+1
sin(2�y)

v=− 1

2�

1

(x+1)2
cos(2�y)

p̂=exp(xy), p= p̂−mean( p̂)

where mean( p̂) is subtracted to ensure condition (4). The corresponding right-hand side f and the
boundary condition uD are found by inserting functions (u,v)� and p in (1)–(3).

Here we use two geometries: the circle (Figure 3(a)) with center at (0.5,0.51) and radius 0.3,
and the so-called ‘fish’ (Figure 3(b)), where the the boundary is given as the zero-level set of the
following function F :

F(x, y) = ((x−0.5)8+2(y−0.51)8−2.5(x−0.5)3(y−0.51)5)

−0.002(2(x−0.5)2+(y−0.5)2−(x−0.5)(y−0.5)−0.252−0.38)

The convergence results are summarized in Figure 4 using the mesh widths h∈{ 1.260 , 1.2
70 , . . . , 1.2

320 }
and the maximum norm of the error. As expected, the convergence is of second order for the
velocity and slightly better than first order for the pressure. It is remarkable that the BCE produces
results of the same accuracy as the EE.

Table I demonstrates how many GMRES iterations were needed to reduce the norm of the
residual to 10−8 when solving the Schur complement system (32). As expected, the best iteration
counts are achieved with the EE. However, it disables the usage of the FFT-based fast Poisson
solver, thus making the whole procedure slow. Important here is the drastic drop of the iteration
count for the BCE if compared with the ZGE. Given this performance together with a better
solution quality as documented in Figure 4, we can conclude that the BCE approach is preferable.

The stopping tolerance for inverting the operator A with the pressure equation method was set
to 10−12 and fast convergence has been observed in all cases (in about 20–30 iterations).

The next example is taken from [27, 28] and allows to test the algorithm in a situation closer to
real flows.

Example 3.2 (Wannier flow)
The computational domain is situated between two non-concentric rotating cylinders as shown in
Figure 5(a). As the expressions for the analytic solution are lengthy, we do not give them here and
refer to [27] instead.

In our example, the inner cylinder rotates with angular velocity 2 in the clockwise direction, the
outer one with angular velocity −2 in the anti-clockwise direction. Figure 5 shows the streamlines
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Figure 3. Geometries used for convergence studies in Example 3.1: (a) circle and (b) ‘fish’.
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Figure 4. Convergence in Example 3.1 with different extensions in �c: (a) circle geometry,
velocity; (b) circle geometry, pressure; (c) ‘fish’ geometry, velocity; and (d) ‘fish’ geometry,

pressure. Mesh widths h∈{ 1.260 , 1.2
80 , . . . , 1.2

320 }.
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Figure 5. Wannier flow. In this case we take the same number n of grid points in the x and y directions,
but the mesh widths are different hx =hy : (a) Geometry used in the convergence tests and streamlines
of the numerical solution computed with n=240 grid points per direction. Note that the computational
domain (marked in the figure) is not a square thus leading to different mesh widths in the x and y
directions. (b) Convergence study using n∈{60,70, . . . ,320} grid points per direction. (u,v) :1, boundary
condition extension, velocity component; (u,v): 2, exact extension, velocity component; p :1, boundary
condition extension, pressure; p :2, exact extension, pressure. Note that the solution quality is the same

for both types of approximation.

and convergence plot. The second-order convergence in velocity and first-order in pressure is
observed.

Table II demonstrates how many GMRES iterations were needed to achieve a 10−8 tolerance
when solving the Schur complement system (32). Summarizing the results in Figure 5 and Table II
we see that also in this case the BCE has been an effective choice. The accuracy of the solution
is the same as for the case with the EE but the cost is kept low by low iteration counts and the
ability to use the FFT Poisson solver.

Example 3.3
The domain in this case is a bended tube with 11 circular inclusions (Figure 6). The inflow
boundary is at the left top and the outflow boundary at the right top, where a parabolic inflow and
outflow are set:

uD=0, vD=(x+3)(x+1) along the inflow boundary

and

uD=0, vD=−(x−3)(x−1) along the outflow boundary
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Figure 6. Numerical results in Example 3.3: (a) streamlines and (b) few level lines of the pressure
with darker gray indicating lower values.

Everywhere else along the pipe boundary and the boundaries of the inclusions, we require the
no-slip condition.

The computational costs using 320 grid points in each direction were 299 GMRES iterations
to achieve 10−4 stopping tolerance, with a runtime of 112min (Matlab 7 implementation on an
Intel Pentium 4 CPU 2.80GHz machine with 1GB RAM). For a better quality of the solution, the
boundary condition in the BCE approach has been weighted by a factor 40. The iteration count is
high in this case; however, note that the geometry has several very thin structures, with only few
grid points connecting different regions of �.

4. SUMMARY

In this paper we have applied the EJIIM to the stationary Stokes equations. Staggered grid finite
differences form the basis of the new algorithm. The underlying fast Stokes solver is constructed
using the pressure equation method together with an FFT-based Poisson solver. The expected
convergence order (second order for velocity and first-order for pressure) has been confirmed by
numerical experiments.

The BCE allows to overcome the problem of relatively high iteration counts, which EJIIM had
in its standard version with ZGE. In addition, the solution quality is improved.
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